Tuesday, April 15, 2014

Parallel and Series Circuits


Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points. The law was named after the German physicist Georg Ohm, who, in a treatise published in 1827, described measurements of applied voltage and current through simple electrical circuits containing various lengths of wire. He presented a slightly more complex equation than the one above (see History section below) to explain his experimental results. The equation below is the modern form of Ohm's law. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:
I = \frac{V}{R},
where I is the current through the conductor in units of amperesV is the potential difference measured across the conductor in units ofvolts, and R is the resistance of the conductor in units of ohms. More specifically, Ohm's law states that the R in this relation is constant, independent of the current.

In physics, the term Ohm's law is also used to refer to various generalizations of the law originally formulated by Ohm. The simplest example of this is:
\mathbf{J} = \sigma \mathbf{E},
where J is the current density at a given location in a resistive material, E is the electric field at that location, and σ is a material dependent parameter called the conductivity. This reformulation of Ohm's law is due to Gustav Kirchhoff.
---------------------
parallel circuit has more than one resistor (anything that uses electricity to do work) and gets its name from having multiple (parallel) paths to move along . Charges can move through any of several paths. If one of the items in the circuit is broken then no charge will move through that path, but other paths will continue to have charges flow through them. Parallel circuits are found in most household electrical wiring. This is done so that lights don't stop working just because you turned your TV off.

The following rules apply to a parallel circuit:
  1. The potential drops of each branch equals the potential rise of the source.
  2. The total current is equal to the sum of the currents in the branches.
The inverse of the total resistance of the circuit (also called effective resistance) is equal to the sum of the inverses of the individual resistances.


One important thing to notice from this last equation is that the more branches you add to a parallel circuit (the more things you plug in) the lower the total resistance becomes. Remember that as the total resistance decreases, the total current increases. So, the more things you plug in, the more current has to flow through the wiring in the wall. That's why plugging too many things in to one electrical outlet can create a real fire hazard.

---------------------
 series circuit has more than one resistor (anything that uses electricity to do work) and gets its name from only having one path for the charges to move along. Charges must move in "series" first going to one resistor then the next. If one of the items in the circuit is broken then no charge will move through the circuit because there is only one path. There is no alternative route. Old style electric holiday lights were often wired in series. If one bulb burned out, the whole string of lights went off.


The following rules apply to a series circuit:
  1. The sum of the potential drops equals the potential rise of the source.
  2. The current is the same everywhere in the series circuit.
  3. The total resistance of the circuit (also called effective resistance) is equal to the sum of the individual resistances.

Schematic Symbols
schematic, or schematic diagram, is a representation of the elements of a system using abstract, graphic symbols rather than realistic pictures. A schematic usually omits all details that are not relevant to the information the schematic is intended to convey, and may add unrealistic elements that aid comprehension. For example, a subway map intended for riders may represent a subway station with a dot; the dot doesn't resemble the actual station at all but gives the viewer information without unnecessary visual clutter. A schematic diagram of a chemical process uses symbols to represent the vessels, piping, valves, pumps, and other equipment of the system, emphasizing their interconnection paths and suppressing physical details. In an electronic circuit diagram, the layout of the symbols may not resemble the layout in the physical circuit. In the schematic diagram, the symbolic elements are arranged to be more easily interpreted by the viewer.

Symbol Component name Meaning

Wire Symbols

electrical wire symbol  Electrical Wire Conductor of electrical current
connected wires symbol Connected Wires Connected crossing
unconnected wires symbol Not Connected Wires Wires are not connected

Switch Symbols and Relay Symbols

SPST switch symbol SPST Toggle Switch Disconnects current when open
SPDT switch symbol SPDT Toggle Switch Selects between two connections
push button symbol Pushbutton Switch (N.O) Momentary switch - normally open
push button symbol Pushbutton Switch (N.C) Momentary switch - normally closed
dip switch symbol DIP Switch DIP switch is used for onboard configuration
spst relay symbol SPST Relay Relay open / close connection by an electromagnet
spdt relay symbol SPDT Relay
jumper symbol Jumper Close connection by jumper insertion on pins.
solder bridge symbol Solder Bridge Solder to close connection

Ground Symbols

earth  ground symbol Earth Ground Used for zero potential reference and electrical shock protection.
chassis symbol Chassis Ground Connected to the chassis of the circuit
common digital ground symbol Digital / Common Ground

Resistor Symbols

resistor symbol Resistor (IEEE) Resistor reduces the current flow.
resistor symbol Resistor (IEC)
potentiomemer symbol Potentiometer (IEEE) Adjustable resistor - has 3 terminals.
potentiometer symbol Potentiometer (IEC)
variable resistor symbol Variable Resistor / Rheostat (IEEE) Adjustable resistor - has 2 terminals.
variable resistor symbol Variable Resistor / Rheostat (IEC)
Trimmer Resistor Preset resistor
Thermistor Thermal resistor - change resistance when temperature changes
Photoresistor / Light dependent resistor (LDR) Photo-resistor - change resistance with light intensity change

Capacitor Symbols

Capacitor Capacitor is used to store electric charge. It acts as short circuit with AC and open circuit with DC.
capacitor symbol Capacitor
polarized capacitor symbol Polarized Capacitor Electrolytic capacitor
polarized capacitor symbol Polarized Capacitor Electrolytic capacitor
variable capacitor symbol Variable Capacitor Adjustable capacitance

Inductor / Coil Symbols

inductor symbol Inductor Coil / solenoid that generates magnetic field
iron core inductor symbol Iron Core Inductor Includes iron
variable core inductor symbol Variable Inductor

Power Supply Symbols

voltage source symbol Voltage Source Generates constant voltage
current source symbol Current Source Generates constant current.
ac power source symbol AC Voltage Source AC voltage source
generator symbol Generator Electrical voltage is generated by mechanical rotation of the generator
battery cell symbol Battery Cell Generates constant voltage
battery symbol Battery Generates constant voltage
controlled voltage source symbol Controlled Voltage Source Generates voltage as a function of voltage or current of other circuit element.
controlled current source symbol Controlled Current Source Generates current as a function of voltage or current of other circuit element.

Meter Symbols

voltmeter symbol Voltmeter Measures voltage. Has very high resistance. Connected in parallel.
ammeter symbol Ammeter Measures electric current. Has near zero resistance. Connected serially.
ohmmeter symbol Ohmmeter Measures resistance
wattmeter symbol Wattmeter Measures electric power

Lamp / Light Bulb Symbols

lamp symbol Lamp / light bulb Generates light when current flows through
lamp symbol Lamp / light bulb
lamp symbol Lamp / light bulb

Diode / LED Symbols

diode symbol Diode Diode allows current flow in one direction only (left to right).
zener diode Zener Diode Allows current flow in one direction, but also can flow in the reverse direction when above breakdown voltage
schottky diode symbol Schottky Diode Schottky diode is a diode with low voltage drop
varicap diode symbol Varactor / Varicap Diode Variable capacitance diode
tunnel diode symbol Tunnel Diode
led symbol Light Emitting Diode (LED) LED emits light when current flows through
photodiode symbol Photodiode Photodiode allows current flow when exposed to light

Transistor Symbols

npn transistor symbol NPN Bipolar Transistor Allows current flow when high potential at base (middle)
pnp transistor symbol PNP Bipolar Transistor Allows current flow when low potential at base (middle)
darlington transistor symbol Darlington Transistor Made from 2 bipolar transistors. Has total gain of the product of each gain.
JFET-N transistor symbol JFET-N Transistor N-channel field effect transistor
JFET-P transistor symbol JFET-P Transistor P-channel field effect transistor
nmos transistor symbol NMOS Transistor N-channel MOSFET transistor
pmos transistor symbol PMOS Transistor P-channel MOSFET transistor

Misc. Symbols

motor symbol Motor Electric motor
transformer symbol Transformer Change AC voltage from high to low or low to high.
Electric bell Rings when activated
Buzzer Produce buzzing sound
fuse symbol Fuse The fuse disconnects when current above threshold. Used to protect circuit from high currents.
fuse symbol Fuse
bus symbol Bus Contains several wires. Usually for data / address.
bus symbol Bus
bus symbol Bus
optocoupler symbol Optocoupler / Opto-isolator Optocoupler isolates connection to other board
speaker symbol Loudspeaker Converts electrical signal to sound waves
microphone symbol Microphone Converts sound waves to electrical signal
operational amplifier symbol Operational Amplifier Amplify input signal
schmitt trigger symbol Schmitt Trigger Operates with hysteresis to reduce noise.
Analog-to-digital converter (ADC) Converts analog signal to digital numbers
Digital-to-Analog converter (DAC) Converts digital numbers to analog signal
crystal oscillator symbol Crystal Oscillator Used to generate precise frequency clock signal

Antenna Symbols

antenna symbol Antenna / aerial Transmits & receives radio waves
antenna symbol Antenna / aerial
dipole antenna symbol Dipole Antenna Two wires simple antenna

Logic Gates Symbols

NOT gate symbol NOT Gate (Inverter) Outputs 1 when input is 0
AND gate symbol AND Gate Outputs 1 when both inputs are 1.
NAND gate symbol NAND Gate Outputs 0 when both inputs are 1. (NOT + AND)
OR gate symbol OR Gate Outputs 1 when any input is 1.
NOR gate symbol NOR Gate Outputs 0 when any input is 1. (NOT + OR)
XOR gate symbol XOR Gate Outputs 1 when inputs are different. (Exclusive OR)
D flip flop symbol D Flip-Flop Stores one bit of data
mux symbol Multiplexer / Mux 2 to 1 Connects the output to  selected input line.
mux symbol Multiplexer / Mux 4 to 1
demux symbol Demultiplexer / Demux 1 to 4 Connects selected output to the input line.

Color Coding..

RESISTOR..

The electronic color code is used to indicate the values or ratings of electronic components, very commonly for resistors, but also for capacitors, inductors, and others. A separate code, the 25-pair color code, is used to identify wires in some telecommunications cables.
The electronic color code was developed in the early 1920s by the Radio Manufacturers Association (now part of Electronic Industries Alliance  (EIA)), and was published as EIA-RS-279. The current international standard is IEC 60062.

A diagram of a resistor, with four color bands A, B, C, D from left to right A diagram of a 2.7 MΩ color-coded resistor.
To distinguish left from right there is a gap between the C and D bands.
  • band A is first significant figure of component value (left side)
  • band B is the second significant figure (Some precision resistors have a third significant figure, and thus five bands.)
  • band C is the decimal multiplier
  • band D if present, indicates tolerance of value in percent (no band means 20%)
For example, a resistor with bands of yellow, violet, red, and gold will have first digit 4 (yellow in table below), second digit 7 (violet), followed by 2 (red) zeros: 4,700 ohms. Gold signifies that the tolerance is ±5%, so the real resistance could lie anywhere between 4,465 and 4,935 ohms.
Resistors manufactured for military use may also include a fifth band which indicates component failure rate (reliability); refer to MIL-HDBK-199 for further details.
Tight tolerance resistors may have three bands for significant figures rather than two, or an additional band indicating temperature coefficient, in units of ppm/K.
All coded components will have at least two value bands and a multiplier; other bands are optional.
The standard color code per EN 60062:2005 is as follows:
Color Significant
figures
Multiplier Tolerance Temp. Coefficient (ppm/K)
Black 0 ×100 250 U
Brown 1 ×101 ±1% F 100 S
Red 2 ×102 ±2% G 50 R
Orange 3 ×103 15 P
Yellow 4 ×104 (±5%) 25 Q
Green 5 ×105 ±0.5% D 20 Z
Blue 6 ×106 ±0.25% C 10 Z
Violet 7 ×107 ±0.1% B 5 M
Gray 8 ×108 ±0.05% (±10%) A 1 K
White 9 ×109
Gold ×10-1 ±5% J
Silver ×10-2 ±10% K
None ±20% M

  1. Any temperature coefficent not assigned its own letter shall be marked "Z", and the coefficient found in other documentation.
  2. For more information, see EN 60062.
  3. Yellow and Gray are used in high-voltage resistors to avoid metal particles in the lacquer.[3]


Resistors use preferred numbers for their specific values, which are determined by their tolerance. These values repeat for every decade of magnitude: 6.8, 68, 680, and so forth. In the E24 series the values are related by the 24th root of 10, while E12 series are related by the 12th root of 10, and E6 series by the 6th root of 10. The tolerance of device values is arranged so that every value corresponds to a preferred number, within the required tolerance.
Zero ohm resistors are made as lengths of wire wrapped in a resistor-shaped body which can be substituted for another resistor value in automatic insertion equipment. They are marked with a single black band.
The 'body-end-dot' or 'body-tip-spot' system was used for radial-lead (and other cylindrical) composition resistors sometimes still found in very old equipment; the first band was given by the body color, the second band by the color of the end of the resistor, and the multiplier by a dot or band around the middle of the resistor. The other end of the resistor was colored gold or silver to give the tolerance, otherwise it was 20%.



Capacitor color-coding

Capacitors may be marked with 4 or more colored bands or dots. The colors encode the first and second most significant digits of the value, and the third color the decimal multiplier in picofarads. Additional bands have meanings which may vary from one type to another. Low-tolerance capacitors may begin with the first 3 (rather than 2) digits of the value. It is usually, but not always, possible to work out what scheme is used by the particular colors used. Cylindrical capacitors marked with bands may look like resistors .

Color Significant digits Multiplier Capacitance tolerance Characteristic DC working voltage Operating temperature EIA/vibration
Black 0 1 ±20% −55 °C to +70 °C 10 to 55 Hz

Brown 1 10 ±1% B 100

Red 2 100 ±2% C −55 °C to +85 °C

Orange 3 1000 D 300

Yellow 4 10000 E −55 °C to +125 °C 10 to 2000 Hz

Green 5 100000 ±0.5% F 500

Blue 6 1000000 −55 °C to +150 °C

Violet 7 10000000

Grey 8

White 9 EIA

Gold ±5%* 1000

Silver ±10%

*or ±0.5 pF, whichever is greater.
Extra bands on ceramic capacitors will identify the voltage rating class and temperature coefficient characteristics. A broad black band was applied to some tubular paper capacitors to indicate the end that had the outer electrode; this allowed this end to be connected to chassis ground to provide some shielding against hum and noise pickup.
Polyester film and "gum drop" tantalum electrolytic capacitors are also color-coded to give the value, working voltage and tolerance.

APRIL 25, 2014





2. GREEN GREEN RED GOLD




3. ORANGE GREEN BLUE SILVER



APRIL 28, 2014
LOGIC GATES TRUTH TABLES

Digital systems are said to be constructed by using logic gates. These gates are the AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described below with the aid of truth tables.

AND gate

 The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high.  A dot (.) is used to show the AND operation i.e. A.B.  Bear in mind that this dot is sometimes omitted i.e. AB
 OR gate
 The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high.  A plus (+) is used to show the OR operation.

NOT gate

 
 The NOT gate is an electronic circuit that produces an inverted version of the input at its output.  It is also known as an inverter.  If the input variable is A, the inverted output is known as NOT A.  This is also shown as A', or A with a bar over the top, as shown at the outputs. The diagrams below show two ways that the NAND logic gate can be configured to produce a NOT gate. It can also be done using NOR logic gates in the same way.
 
 NAND gate

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate.  The outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a small circle on the output. The small circle represents inversion.
 NOR gate

   
  This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate.  The outputs of all NOR gates are low if any of the inputs are high. The symbol is an OR gate with a small circle on the output. The small circle represents inversion.

EXOR gate


  



 The 'Exclusive-OR' gate is a circuit which will give a high   output if either, but not both, of its two inputs are high.  An encircled plus sign () is used to show the EOR operation.

EXNOR gate

  



The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small circle on the output. The small circle represents inversion.

The NAND and NOR gates are called universal functions since with either one the AND and OR functions and NOT can be generated.
Note:
A function in sum of products form can be implemented using NAND gates by replacing all AND and OR gates by NAND gates.

A function in product of sums form can be implemented using NOR gates by replacing all AND and OR gates by NOR gates.

74 Series

Quad 2-input gates

  • 7400 quad 2-input NAND
  • 7403 quad 2-input NAND with open collector outputs
  • 7408 quad 2-input AND
  • 7409 quad 2-input AND with open collector outputs
  • 7432 quad 2-input OR
  • 7486 quad 2-input EX-OR
  • 74132 quad 2-input NAND with Schmitt trigger inputs


The 74132 has Schmitt trigger inputs to provide good noise immunity. They are ideal for slowly changing or noisy signals.
  • 7402 quad 2-input NOR 



Triple 3-input gates

  • 7410 triple 3-input NAND
  • 7411 triple 3-input AND
  • 7412 triple 3-input NAND with open collector outputs
  • 7427 triple 3-input NOR
Notice how gate 1 is spread across the two sides of the package. 


Dual 4-input gates

  • 7420 dual 4-input NAND
  • 7421 dual 4-input AND
NC = No Connection (a pin that is not used). 


7430 8-input NAND gate

NC = No Connection (a pin that is not used)


Hex NOT gates

  • 7404 hex NOT
  • 7405 hex NOT with open collector outputs
  • 7414 hex NOT with Schmitt trigger inputs
The 7414 has Schmitt trigger inputs to provide good noise immunity. They are ideal for slowly changing or noisy signals.



Counters

7490 decade (0-9) ripple counter
7493 4-bit (0-15) ripple counter




74390 dual decade (0-9) ripple counter



74393 dual 4-bit (0-15) ripple counter



74160-3 synchronous counters


  • 74160 synchronous decade counter (standard reset)
  • 74161 synchronous 4-bit counter (standard reset)
  • 74162 synchronous decade counter (synchronous reset)
  • 74163 synchronous 4-bit counter (synchronous reset)








74192 up/down decade (0-9) counter
74193 up/down 4-bit (0-15) counter


Decoders


7442 BCD to decimal (1 of 10) decoder


7447 BCD to 7-segment display driver





Source: https://en.wikipedia.org/wiki/Ohms_law

 http://www.ee.surrey.ac.uk/Projects/CAL/digital-logic/gatesfunc/index.html
http://electronicsclub.info/74series.htm

No comments:

Post a Comment